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Abstract 
The possible usefulness of eigenvectors and eigenvalues 
of Kar le-Hauptman matrices is examined. The eigen- 
value spectra of structures with calculated and 
measured I Ul's are discussed and the result of several 
attempts at phase refinement are reported. The use of 
the sum of the square of the negative eigenvalues 
(SSNE) as a goodness-of-fit criterion is examined. The 
possible use of a priori information is investigated using 
the approximation of orthogonal electron densities 
corresponding to eigenvectors with eigenvalues greater 
than zero. 

1. Introduction 
The nomenclature used in this paper is given in Table 1. 

In an earlier paper (van der Plas et al., 1998), the 
algebraic properties of large Kar le-Hauptman matrices 
were examined and the information obtainable from 
the eigenvalues and eigenvectors of these matrices was 
investigated. It was found that for calculated reflections 
the eigenvalue spectrum of a Kar le-Hauptman matrix 
contains a maximum of N eigenvalues with values 
greater than zero and (if n > N) n -  N eigenvahies 
exactly equal to zero. This result leads directly to the 
assumption that the properties of eigenvalues and 
eigenvectors might be used in an algebraic approach to 
the phase problem, as an alternative to the probabilistic 
approach commonly associated with direct methods. 

Since in practice Kar le-Hauptman matrices filled 
with random phases generally contain negative eigen- 
values, algorithms were developed to minimize the 
SSNE. Two possibilities are reported in this paper: one 
uses the eigenvectors with positive eigenvalues to 
construct a new matrix, the second consists of squaring 
the Kar le-Hauptman matrix. Both algorithms are based 
on the properties of Kar le-Hauptman matrices with 
correct phases: a Kar le-Hauptman matrix with correct 
phases can be reconstructed using only the eigenvectors 
corresponding to positive eigenvalues (although this is 
an approximation when measured reflections are used) 
and a Kar le-Hauptman matrix with correct phases 
equals its own square (again an approximation when 
finite matrices are used). These properties were derived 
in the previous paper. 
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Table 1. Nomenclature 

N Number of atoms in the unit cell 
n Order of a matrix 
)~j, ej The jth eigenvalue and corresponding eigenvector 
h Index array for generating Karle-Hauptman matrices: 

Ai/= Eh(i)_h(O 
SSNE Squared sum of negative eigenvalues 

Table 2. Eigenvalues as a function of the dimension 

Eigenvalue Dimension 5 Dimension 10 Dimension 500 

1 0.2770 1.2992 99.5125 
2 0.8320 1.6208 99.5940 
3 1.1407 2.1128 99.6575 
4 1.3220 2.3101 100.463 
5 1.4283 2.6567 100.772 

Table 3. Experimental data 

Compound RN001 
Composition CztO3H28 
Space group P2a 
No. of units in cell 2 

2. Eigenvalue spectra 
First, the behaviour of the eigenvalues of Kar le-  
Hauptman matrices corresponding to a small structure 
(structure I) is examined. The test structure was one- 
dimensional, consisting of five atoms at random posi- 
tions along the a axis. Several Kar le-Hauptman 
matrices of varying orders were constructed. For each 
matrix, the eigenvalues were obtained using calculated 
U(H)'s. The number of non-zero eigenvalues for each 
matrix was independent of the order of the matrix and 
equal to the number of atoms in the cell (five). Since 
U's were used in the Kar le-Hauptman matrices, the 
average non-zero eigenvalue now has a value of n /N  
and not 1, which is the average when the reflections as 
defined by Main (1975) are used. The values of the non- 
zero eigenvalues are given in Table 2. Clearly, as the 
matrices become larger, the difference between the 
non-zero eigenvalues becomes smaller. This is in 
agreement with theory. 

Finally, we examined the eigenvalue spectrum of 
RN001, a small steroid structure (see Table 3). The 
calculations were performed with [Ul's based on 
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Table 4. Eigenvalues o f  RNO01 (75 x 75 matrix) 

Phase set 

Correct phase set, not refined 
Correct phase set, refined 
Random phase set, not refined 
Random phase set, refined 

Lowest negative No. of negative Average phase 
SSNE eigenvalue eigenvalues error (°) 

1.295 -0 .65 16 1 
0.907 -0 .44  21 11 

30.287 -2 .57 22 80 
8.737 -1 .08  27 73 

measured intensities. In Fig. 1, the lowest eigenvalues of 
a Kar le-Hauptman matrix of dimension 75 filled with 
two different phase sets are displayed: one phase set 
corresponding to the structure and a random phase set. 
Both sets have been refined using an algorithm that is 
given in the refinement section. Clearly, the Karle-  
Hauptman matrix has negative eigenvalues regardless 
of the quality of the phase set, indicating that the strict 
non-negativity no longer holds for unitary structure 
factors based on measured intensities. This can be 
contributed to errors in the scaling of the I Ul's and the 
errors in the measurement. If semipositivity can no 
longer be used, a new criterion to investigate the quality 
of a phase set is needed. The sum of the squares of the 
negative eigenvalues (SSNE) is a natural choice for 
such a criterion. Applying this criterion to the phase 
sets in Fig. 1 gives the results shown in Table 4. Other 
criteria are also shown: the first column gives the SSNE, 
the second column gives the smallest eigenvalue, the 
third one reports the number of negative eigenvalues 
and the final column gives the average phase error of 
the phase sets, calculated over the 276 strong reflections 
present in the matrix. 

These values indicate that even though the Kar le-  
Hauptman matrix is no longer semipositive definite for 
larger orders, using U values based on measured 

intensities, the number and value of the negative 
'eigenvalues still give a clear indication of the relation 
between the structure and the phase sets. 
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Fig. 1. Lowest eigenvalues of RN001. 

3. Eigendensities 

After the calculation of the eigenvalues and eigenvec- 
tors, it is possible to calculate the contribution of each 
eigenvector to the electron density obtainable from the 
Fourier transform of the reflections in the Kar le-  
Hauptman matrix. The density corresponding to one 
eigenvector is called an eigendensity, after the termi- 
nology used by Main (1975). 

The contribution of the ith eigenvector to the elec- 
tron density can be calculated by generating the matrix 

KH' i = eikie7 (1) 

and using the elements in the matrix KH I as structure 
factors for a Fourier transformation. Because the sum 
over all KH' i is equal to the original Kar le-Hauptman 
matrix, the sum of these eigendensities is equal to the 
electron density obtained by taking all the structure 
factors in the Kar le-Hauptman matrix and using them 
in a Fourier transformation. The exact formula used for 
the calculation of electron density is formula (30) in the 
preceding paper: 

p(x), = ~ k,(e,k~,, + e,) 
k=l,l=l,kCt 

x exp{-2rri[h(l) - h(k)] • x}, (2) 

in which ej is the average value of the diagonal elements 
in the matrix Bj = ejXe 7, namely (ejk~jk)k. For more 
information and the difference between this approach 
and the original approach used by Main, we refer to the 
preceding paper. 

Using calculated unitary structure factors, it is 
expected that the sum of the eigendensities is exactly 
the structure, the only possible difference being caused 
by the absence of reflections not present in the Kar le-  
Hauptman matrix used in the calculations. To investi- 
gate the properties of these eigendensities, the one- 
dimensional structure used in the previous paragraph is 
examined. A sample of the results of the calculation of 
the eigendensities corresponding to two eigenvectors of 
a 20 x 20 Kar le-Hauptman matrix is shown in Figs. 2 
and 3. The eigendensities were calculated from two 
different Kar le-Hauptman matrices, one with a simple 
indexing array, namely h = 1, 2, 3, 4, 5 . . . .  , resulting in 

a large redundancy of reflections in the Kar le-  
H a u p t m a n  matrices (Fig. 2) and the second one with an 
array h -- 1, 2, 4, 7, 11 . . . . .  resulting in minimum 
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redundancy (Fig. 3). Matrices with a large redundancy 
contain a large number of identical reflections. For 
example, with the simple indexing array, the reflection 
U 1 occurs n -  1 times. The Karle-Hauptman matrices 
are generated by the indexing array as follows: an 
element at position (i, j) is given by Uh(j)_h(i). The sum of 
the eigendensities of the five eigenvectors with non- 
zero eigenvalues equals the original structure in both 
cases, although there is a difference in the sharpness of 
the peaks. This is also in accordance with theory. 

In Fig. 2, the simple indexing array results i n  
contributions from many low-order reflections (the 
highest order is 20-1  = 19). Thus, the peaks are not as 
sharp as in Fig. 3. In both figures, clearly the electron 
density of the eigendensities is not distributed evenly 
among the peaks. This does not follow directly from the 
definition but it was shown in the preceding paper that 
for large matrices the eigendensities are approximately 
orthogonal. This implies that, if the electron density at 
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Fig. 3. Eigendensity corresponding to e 2, small redundancy. 

nonpeak positions is zero, the electron-density distri- 
bution over the peaks cannot be even. It seems likely 
that for smaller matrices the electron-density distribu- 
tion is also uneven. 

The uneven distribution of density over the eigen- 
densities is of possible use in phase refinement. In the 
next section, methods will be discussed for phase 
refinement in which eigendensities play an important 
part. When a small part of the structure is known, one 
can regard this part as if it was a contribution from an 
eigendensity and thus use it to generate a new phase 
set, partly based on the known part of the structure. 
This will be discussed further in the next section. 

4. Phase refinement 

Several techniques to optimize the eigenvalue spectrum 
as a function of the phases were tried. By optimization 
is meant trying to minimize the SSNE. As was 
explained in the preceding paper and the earlier 
sections of this paper, this is a suitable criterion for 
phase sets in Karle-Hauptman matrices, provided there 
is redundant symmetry in the matrix (de Gelder, Elout, 
de Graaff & Schenk, 1993). Main (1975) also proposed 
several refining routines based on eigenvalues and 
eigenvectors. 

Owing to the complexity of the problem, simple 
linear optimization routines such as Simplex are insuf- 
ficient. Routines were designed based on several 
specific properties of large Karle-Hauptman matrices. 
The first routine is based on the fact that any semi- 
positive Karle-Hauptman matrix can be written as the 
sum of its positive eigenvalues and -vectors by 

N 
m I  = e, Xie , (3) 

i=l  

where e~ is the eigenvector corresponding to the 
eigenvalue %i, which is greater than zero (van der Plas et 
al., 1998). Note that this only holds exactly when 
calculated I Ul's are used, but the approximation is 
acceptable when the orders are about 2N or larger. That 
the deviation from the theoretical eigenvalue spectrum, 
resulting from the use of measured I Ul's, is not too 
large may be seen in the eigenvalue spectrum of 
RN001, as discussed in the previous paragraph. 

The refinement method consists of generating a 
Karle-Hauptman matrix containing the measured I UI 
values and random phases. Next, the eigenvalues and 
-vectors are calculated and a new Karle-Hauptman 
matrix is generated by taking the postive eigenvalues 
and the corresponding eigenvectors and substituting 
them in (3). From this new matrix, only the phases are 
substituted in the original matrix and the process is 
repeated until convergence or a maximum number of 
cycles is reached. 
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Table  5. Results of  method one: generating a new Karle-Hauptman matrix from the eigenvectors corresponding to 
positive eigenvalues 

The number of cycles indicates how many times this method was applied. The results for each number of cycles are given in three columns. The 
first column gives the average error in the phase set, the second the SSNE and the third column indicates whether AUTOFOUR was able to 
solve the structure with the phase set produced. 

Phase set 0 cycles 50 cycles 500 cycles 2000 cycles 

1 (51 by 51) 80 13.58 No 76 5.23 Yes 74 1.40 No 56 0.61 Yes 
(101 by 101) 79 54.04 Yes 75 24.93 No 72 12.80 No 69 7.63 Yes 
(151 by 151) 81 132.27 No 79 75.44 No 66 29.67 Yes 55 17.69 Yes 

2 (51 by 51) 79 12.95 No 75 3.60 No 71 1.32 Yes 54 0.69 Yes 
(101 by 101) 81 59.58 No 76 23.64 No 66 10.50 Yes 50 6.21 Yes 
(151 by 151) 80 129.33 No 76 70.33 Yes 74 29.96 No 64 16.73 No 

3 (51 by 51) 78 14.47 No 74 3.68 No 73 1.42 No 67 1.11 Yes 
(101 by 101) 79 61.20 Yes 76 27.50 No 78 9.31 No 79 7.23 No 
(151 by 151) 81 119.13 Yes 80 72.06 Yes 77 35.36 No 60 21.00 Yes 

4 (51 by 51) 79 13.53 Yes 70 3.93 No 77 1.03 Yes 75 0.59 No 
(101 by 101) 79 58.64 No 79 24.97 Yes 77 10.02 No 78 7.04 No 
(151 by 151) 83 125.70 Yes 79 73.19 Yes 76 35.33 Yes 77 23.87 No 

5 (51 by 51) 77 17.42 No 80 4.33 No 76 1.02 No 66 0.54 Yes 
(101 by 101) 81 58.77 No 81 27.54 No 73 11.96 Yes 73 8.59 Yes 
(151 by 151) 80 126.96 No 77 74.27 Yes 75 33.07 Yes 68 19.59 No 

6 (51 by 51) 78 10.82 No 74 3.42 No 73 1.38 Yes 68 1.06 No 
(101 by 101) 80 57.83 No 79 26.97 No 76 13.29 Yes 52 7.97 No 
(151 by 151) 84 123.61 No 81 70.18 Yes 76 26.50 No 77 15.96 No 

7 (51 by 51) 79 13.83 No 76 5.06 No 71 1.20 No 76 0.83 No 
(101 by 101) 80 59.24 Yes 77 27.41 Yes 63 9.14 Yes 37 4.08 Yes 
(151 by 151) 82 124.99 Yes 81 69.74 No 74 29.90 No 71 26.46 No 

8 (51 by 51) 76 14.39 No 75 4.05 No 74 1.38 No 76 1.32 Yes 
(101 by 101) 83 51.46 No 83 23.31 No 82 10.47 No 75 7.23 No 
(151 by 151) 82 123.96 Yes 81 67.88 Yes 80 31.78 No 67 13.42 No 

9 (51 by 51) 77 13.13 Yes 70 3.11 Yes 64 0.87 Yes 64 0.71 Yes 
(101 by 101) 81 49.00 Yes 79 23.42 No 71 8.78 Yes 52 5.81 No 
(151 by 151) 80 136.77 Yes 80 78.36 No 79 37.70 No 78 25.76 No 

_10 (51 by 51) 80 12.85 No 79 4.80 No 75 1.54 No 76 1.01 No 
(101 by 101) 81 53.42 No 81 25.12 No 78 11.71 No 80 8.24 No 
(151 by 151) 81 118.41 No 80 67.51 Yes 71 27.32 Yes 70 21.28 No 

T h e  s e c o n d  rou t i ne  is b a s e d  on  the  fact  tha t  in the  
infini te case,  for  equa l  a toms  and  w h e n  the  phases  are  
cor rec t ,  a K a r l e - H a u p t m a n  ma t r ix  equa ls  its o w n  
square .  Aga in ,  r a n d o m  phases  a re  ass igned  to the  I Ul's 
in the  ma t r ix  bu t  n o w  the  ma t r ix  is s q u a r e d  and  the  
phases  in the  n e w  ma t r ix  a re  subs t i tu ted  in the  org ina l  
ma t r ix  and  the  p rocess  is r e p e a t e d  unt i l  c o n v e r g e n c e  or  
the  m a x i m u m  n u m b e r  of  cycles is r e a c h e d .  N o t e  tha t  
this p r o c e d u r e  is equ iva l en t  to app ly ing  "the Sayre  
e q u a t i o n  to the  re f lec t ion  KHij using the  e l e m e n t s  in the  
i th r o w  and  the  j t h  co lumn.  

T h e  ma t r i ces  w e r e  g e n e r a t e d  acco rd ing  to the  
p r o c e d u r e s  d e s c r i b e d  by de  Ge lde r ,  de  Graa f f  & 

S c h e n k  (1993). In  o r d e r  to r egu la t e  the  r e f i n e m e n t ,  
f udge  fac tors  w e r e  a p p h e d  to m e d i a t e  the  n e w  and  the  
o ld  phase  sets. T h e s e  fudge  factors  r e p r e s e n t  the  we igh t  
of  the  n e w  phase  set, r ang ing  f rom 1 to 0. In  the  first 
r e f i n e m e n t  rou t ine ,  the  fudge  fac tors  w e r e  b a s e d  on  the  
s q u a r e d  sum of  the  nega t ive  e igenva lues  (SSNE) :  if the  
S S N E  decreases ,  the  fudge  fac tor  is i n c r e a s e d  and  vice 
versa. In  the  s e c o n d  rou t ine ,  the  fudge  factors  are  
inverse ly  p r o p o r t i o n a l  to the  d i f f e rence  in I UI b e t w e e n  
the  o rg ina l  en t ry  in the  ma t r ix  a n d  the  c o r r e s p o n d i n g  
en t ry  in the  s q u a r e d  matr ix .  I t  was  f o u n d  tha t  ' fudg ing '  

was  espec ia l ly  i m p o r t a n t  us ing ma t r ix  squar ing ,  s ince 
this r ep r e sen t s  a Sayre  a p p r o x i m a t i o n  ove r  on ly  a 
l imi ted  n u m b e r  of  terms.  

T h e  r e f i n e m e n t  m e t h o d s  de sc r i bed  a b o v e  w e r e  used  
bo th  s epe ra t e ly  and  in c o m b i n a t i o n ,  the  resul ts  a re  
s h o w n  in Tables  5, 6 and  7. In  all expe r imen t s ,  t en  
r a n d o m  phase  sets w e r e  g e n e r a t e d  and  ref ined.  T h e  
resu l t ing  phase  sets w e r e  c o m p a r e d  wi th  t he  co r r ec t  
p h a s e  set  to find a phase  e r r o r  and  a F o u r i e r  t r a n s f o r m  
was p e r f o r m e d  to find p e a k  pos i t ions  c o r r e s p o n d i n g  to 
the  phase  sets. T h e  a tomic  pos i t ions  w e r e  u sed  as i npu t  
for  the  p r o g r a m  A U T O F O U R  ( K i n n e g i n g  & de  Graaff ,  
1984), a F o u r i e r  recyc l ing  p r o g r a m  tha t  tr ies to e x t e n d  
the  s ta r t ing  pos i t ions  in to  the  c o m p l e t e  crysta l  s t ruc-  
ture.  

The  tables  con t a in  the  fo l lowing  in fo rma t ion :  In  the  
first co lumn ,  the  p h a s e  set  and  the  d i m e n s i o n  of  t he  
ma t r ix  are  given.  In  the  next  co lumn ,  the  ave rage  e r r o r  
in the  p h a s e  set  is given,  f o l l owed  by the  SSNE.  ( In  
Table  6, w h e r e  this f igure is unava i lab le ,  the  e n t r y  is an  
ind ica t ion  of  h o w  close the  m a g n i t u d e  of  the  ca l cu la t ed  
ref lec t ions  is to the  m e a s u r e d  ref lect ions.)  T h e  nex t  
en t ry  ind ica tes  w h e t h e r  or  no t  the  s t ruc tu re  was  so lved  
by the  A U T O F O U R  prog ram.  This is r e p e a t e d  in the  



J. L. V A N  D E R  P L A S ,  R.  A.  G. D E  G R A A F F  A N D  H. S C H E N K  271 

Tab le  6. Results o f  method two: generating a new Kar le -Hauptman matrix by squaring the original matrix 

The number of cycles indicates how many times this method was applied. The results for each number of cycles are given in three columns. The 
first column gives the average error in the phase set, the second gives an indication of the difference between the old and new matrices, and the 
third column indicates whether A UTOFOUR was able to_solve the structure with the phase set produced. 

Phase set 0cycles 50 cycles 500cydes 2000 cydes 

1 (51 by51) 79 - No 49 1817 Yes 43 2162 Yes 43 2169 Yes 
(101 by 101) 79 - Yes 61 7756 No 38 9311 Yes 38 9331 Yes 
(151 by 151) 81 - No 47 25145 Yes 42 25868 Yes 45 25790 Yes 

2 (51 by 51) 79 - No 46 1607 Yes 43 2168 Yes 43 2175 Yes 
(101 by 101) 81 - Yes 50 8396 Yes 72 9701 No 73 9796 Yes 
(151 by 151) 80 - No 44 24513 Yes 39 25893 Yes 41 25818 Yes 

3 (51 by 51) 78 - Yes 48 1767 Yes 43 2175 Yes 43 2175 Yes 
(101 by 101) 79 - Yes 63 7992 No 41 9322 Yes 40 9343 Yes 
(151 by 151) 81 - Yes 46 21974 Yes 49 23076 No 44 25734 Yes 

4 (51 by 51) 79 - No 67 2099 No 65 2175 No 65 2181 No 
(101 by 101) 79 - No 79 8046 No 72 9767 No 72 9779 No 
(151 by 151) 83 - Yes 58 20571 Yes 48 25473 Yes 47 25640 Yes 

5 (51 by 51) 77 - Yes 67 2090 No 66 2143 No 65 2154 No 
(101 by 101) 81 - No 66 9444 No 74 9776 No 74 9781 No 
(151 by 151) 80 - No 67 17797 No 39 25938 Yes 40 25881 Yes 

6 (51 by 51) 78 - No 69 2070 No 65 2188 No 65 2189 No 
(101 by 101) 80 - No 47 8412 No 37 9332 Yes 37 9337 Yes 
(151 by 151) 84 - No 49 23201 Yes 39 25764 Yes 40 25732 Yes 

7 (51 by 51) 78 - No 65 2092 No 64 2143 No 65 2188 No 
(101 by 101) 80 - Yes 41 8830 Yes 39 9324 Yes 39 9341 Yes 
(151 by 151) 82 - Yes 47 22219 Yes 46 24672 No 45 24776 No 

8 (51 by 51) 77 - No 42 2001 Yes 42 2172 No 42 2172 No 
(101 by 101) 83 - No 79 7850 No 81 9814 No 82 9829 No 
(151 by 151) 82 - No 47 24419 No 39 25882 No 40 25826 Yes 

9 (51 by 51) 77 - Yes 40 2094 No 41 2179 Yes 41 2182 No 
(101 by 101) 81 - No 64 8660 No 67 9084 No 70 9395 No 
(151 by 151) 80 - No 77 17443 No 47 25334 Yes 45 25762 Yes 

10 (51 by 51) 80 - Yes 64 2125 No 65 2191 No 65 2196 No 
(101 by 101) 81 - No 52 8277 Yes 39 9317 Yes 39 9325 No 
(151 by 151) 81 - No 85 17839 No 79 21588 No 81 21784 No 

fo l l owing  c o l u m n s  fo r  d i f f e r e n t  n u m b e r s  o f  cycles. I n  
Tab le  5, t h e  first r e f i n e m e n t  m e t h o d  was  u s e d  exclu-  
sively, in Tab le  6 ,  t he  resu l t s  a re  s h o w n  for  t h e  s e c o n d  
r o u t i n e  a n d  Tab le  7 s h o w s  t he  resu l t s  if t h e  two  r o u t i n e s  
are  a l t e r n a t e d  e v e r y  cycle  ( this  is r e f e r r e d  to  as m e t h o d  
th r ee ) .  

T h e s e  resu l t s  s h o w  t h e  i m p o r t a n c e  o f  t he  d i m e n s i o n  
o f  t he  m a t r i x  a n d  t h e  n u m b e r  o f  cycles. A l a rge  n u m b e r  
o f  cycles  is n e e d e d ,  e spec ia l ly  w h e n  la rge  m a t r i c e s  a re  
c o n s i d e r e d  a n d  us ing  m e t h o d  one .  A n o t h e r  i m p o r t a n t  
c o n c l u s i o n  tha t  c an  be  d r a w n  is t h a t  t h e  S S N E  is a g o o d  
i n d i c a t i o n  o f  t he  qua l i t y  o f  a p h a s e  set.  Th i s  is m o s t  
e v i d e n t  for  l a rge  m a t r i c e s  u s ing  m e t h o d  th ree .  Tab le  8 

u s ing  e i g e n v a l u e s  a n d  e igenvec to r s .  In  p rac t ice ,  a 
m o d i f i e d  v e r s i o n  o f  m e t h o d  o n e  was  used .  A f t e r  
g e n e r a t i n g  t h e  e i g e n v a l u e s  a n d  e i g e n v e c t o r s ,  s eve ra l  
c o n t r i b u t i n g  e i g e n v e c t o r s  w e r e  r e p l a c e d  by  a con t r i -  
b u t i o n  f r o m  a k n o w n  a t o m i c  pos i t i on .  Th i s  was  
a c c o m p l i s h e d  by  r e p l a c i n g  t h e  c o n t r i b u t i o n  f r o m  Ihe  
F o u r i e r  t r a n s f o r m  f r o m  t h e  e i g e n v e c t o r  by  a c o n t r i b u -  
t i on  f r o m  an  a t o m  w h o s e  p o s i t i o n  is k n o w n .  Thus ,  

i n s t e a d  o f  a d d i n g  a t e r m  f r o m  (2) t o w a r d s  t h e  n e w  
K a r l e - H a u p t m a n  ma t r ix ,  t h e  c o n t r i b u t i o n  is t a k e n  f r o m  

KHh,kj = Z /exp[2ml t (h  k -- h h ) .  rj], (4) 

shows  t he  a v e r a g e  m a g n i t u d e  o f  t he  en t r i e s  in  t h e  w h e r e  rj is t h e  p o s i t i o n  o f  t h e  k n o w n  a t o m  a n d  z/ 
m a t r i c e s  a n d  t h e  d i s t r i b u t i o n  o f  t he  re f lec t ions .  I n  c o r r e s p o n d s  to  its e l e c t r o n  dens i ty .  T h e  c o n t r i b u t i o n  is 
c o l u m n  3, t he  n u m b e r  o f  s t r o n g  i n d e p e n d e n t  r e f l ec t ions  
t h a t  a re  u s e d  to ca l cu l a t e  t h e  p h a s e  e r r o r  is g iven.  
C o l u m n  4 c o n t a i n s  t h e  t o t a l  n u m b e r  o f  i n d e p e n d e n t  
ref lec t ions .  In  c o l u m n  5, t he  n u m b e r  o f  s y m m e t r y -  
e q u i v a l e n t  r e f l ec t ions  is g iven .  T h e  n u m b e r s  a re  fo r  t h e  
u p p e r  t r i ang le  o f  t h e  m a t r i x  only.  

Finally,  t h e  use  o f  a priori i n f o r m a t i o n  was  e x a m i n e d .  

sca led  by  r e q u i t i n g  t ha t  t h e  e l e m e n t s  K H  h h are  e q u a l  
. . . .  , j .  

to  t h e  c o r r e s p o n d i n g  e l e m e n t  m t h e  o n g l n a l  c o n t r i b u -  
t i on  f r o m  (2). 

I t  was  f o u n d  t h a t  th is  p r o c e d u r e  resu l t s  in  m u c h  
fas t e r  c o n v e r g e n c e  a n d  t h a t  t h e  r e s u l t a n t  p h a s e  set  was  
n e a r l y  i n d e p e n d e n t  o f  t he  v a l u e  o f  t he  r a n d o m  p h a s e s  
in t h e  s t a r t i ng  set.  Al l  r e su l t i ng  p h a s e  sets  h a d  an  

In  t h e  p r e v i o u s  sec t ion ,  t h e  p r o p e r t i e s  o f  e i g e n d e n s i t i e s  a v e r a g e  p h a s e  e r r o r  l o w e r  t h a n  40 ° w h e n  f o u r  k n o w n  

s u g g e s t e d  t h e y  m i g h t  be  u s e d  to i n t r o d u c e  k n o w n  a t o m s  w e r e  u s e d  in t h e  p r o c e d u r e .  T h e  c o n c l u s i o n  t h a t  
i n f o r m a t i o n  in to  t h e  p r o c e s s  o f  g e n e r a t i n g  p h a s e  s e t s  can  be  d r a w n  f r o m  t h e s e  resu l t s  is t h a t  u se  o f  a priori 
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Tab le  7. Results of  methods one and two combined 

The number of cycles indicates how many times either method was applied. The results for each number of cycles are given in three columns. 
:The first column gives the average error in the phase set, the second the SSNE and the third column indicates whether AUTOFOUR was able to 
solve the structure with the phase set produced. 

Phase set 0 cycles 50 cycles 500 cycles 2000 cycles 

1 (51 by 51) 80 13.58 No 62 1.85 No 44 0.52 Yes 44 0.52 Yes 
(101 by 101) 79 54.04 Yes 67 8.47 No 38 3.75 Yes 37 3.79 Yes 
(151 by 151) 81 132.27 No 55 21.53 Yes 44 13.05 Yes 43 12.86 Yes 

2 (51 by 51) 79 12.95 No 57 0.93 Yes 43 0.48 Yes 43 0.48 Yes 
(101 by 101) 81 59.58 No 53 8.55 Yes 41 3.65 Yes 40 3.79 Yes 
(151 by 151) 80 129.33 No 56 23.70 Yes 38 11.75 Yes 38 12.11 Yes 

3 (51 by 51) 78 14.47 No 64 2.11 Yes 40 0.48 Yes 40 0.48 Yes 
(101 by 101) 79 61.20 Yes 69 8.84 Yes 41 3.82 Yes 40 3.79 Yes 
(151 by 151) 81 119.13 Yes 52 38.72 No 45 13.58 No 43 12.81 Yes 

4 (51 by 51) 79 13.53 Yes 69 0.89 No 67 0.52 No 66 0.52 No 
(101 by 101) 79 58.64 No 75 9.37 Yes 72 5.19 No 72 5.22 No 
(151 by 151) 83 125.70 Yes 66 39.34 Yes 44 14.87 Yes 43 12.84 Yes 

5 (51 by 51) 77 17.42 No 68 0.82 No 65 0.52 No 65 0.52 No 
(101 by 101) 81 58.77 No 63 8.76 No 72 5.27 No 72 5.22 No 
(151 by 151) 80 126.96 No 75 37.32 Yes 40 13.11 Yes 39 12.88 Yes 

6 (51 by 51) 78 10.82 No 72 1.01 Yes 65 0.52 No 65 0.52 No 
(101 by 101) 80 57.83 No 48 10.77 No 38 3.76 Yes 37 3.79 Yes 
(151 by 151) 84 123.61 No 56 25.54 Yes 43 11.77 Yes 42 12.12 Yes 

7 (51 by 51) 79 13.83 No 71 1.13 No 65 0.52 No 65 0.52 Yes 
(101 by 101) 80 59.24 Yes 43 6.39 Yes 40 3.78 Yes 40 3.79 Yes 
(151 by 151) 82 124.99 Yes 56 30.88 No 42 13.47 Yes 38 12.09 Yes 

8 (51 by 51) 76 14.39 No 41 0.69 Yes 58 0.53 Yes 65 0.52 No 
(101 by 101) 83 51.46 No 81 10.22 No 81 5.11 No 81 5.14 No 
(151 by 151) 82 123.96 Yes 54 17.45 Yes 41 12.71 Yes 38 12.10 Yes 

9 (51 by 51) 77 13.13 Yes 44 0.60 Yes 41 0.52 Yes 41 0.52 No 
(101 by 101) 81 49.00 Yes 66 7.40 No 67 6.73 No 68 7.40 No 
(151 by 151) 80 136.77 Yes 80 44.99 No 79 26.78 No 43 12.84 Yes 

10 (51 by 51) 80 12.85 No 64 1.36 No 66 0.52 Yes 67 0.52 No 
(101 by 101) 81 53.42 No 66 10.06 No 40 3.87 No 40 3.79 Yes 
(151 by 151) 81 118.41 No 83 32.70 No 80 16.97 No 79 16.99 No 

Order of 
matrix 

51 
101 
151 

Tab le  8. Properties of  the matrices 

No. of 
Average No. of strong independent Total No. of 

l El reflections reflections reflections 

1.35 191 345 789 
1.18 328 782 3774 
1.10 356 937 9230 

i n f o r m a t i o n  is poss ib l e  b u t  t h a t  t he  n a t u r e  o f  t h e  
r e f i n e m e n t  e f fec t ive ly  resu l t s  in  a s ingle  s o l u t i o n  
m e t h o d .  

K a r l e - H a u p t m a n  m a t r i x  s imp ly  by  e x c h a n g i n g  o n e  
e i g e n v a l u e  a n d  e i g e n v e c t o r  f r o m  t h e  r a n d o m  s t a r t i ng  
set  wi th  o n e  c a l c u l a t e d  f r o m  a k n o w n  a t o m i c  pos i t i on .  

Finally,  t h e  e i g e n v a l u e s  can  be  u s e d  in p h a s e  ref ine-  
m e n t ,  fo r  e x a m p l e  u s ing  t h e  m e t h o d s  d e s c r i b e d  in t h e  
p r e v i o u s  sec t ion .  T h e  overa l l  C o n c l u s i o n  is t h a t  t h e  
resu l t s  a re  p r o m i s i n g  b u t  t he  ca l cu l a t i ons  a re  t i m e  
c o n s u m i n g  a n d  c o n s i d e r a b l e  r e s e a r c h  is still n e e d e d  in 
this  a rea .  F u r t h e r  i n v e s t i g a t i o n  is b e i n g  p e r f o r m e d  o n  
c o m b i n i n g  t h e s e  t e c h n i q u e s  wi th  t h e  ' s h a k e - a n d - b a k e '  
p r inc ip le ,  w h i c h  has  b e c o m e  p o p u l a r  recent ly .  

5. Conclusions 

T h e  e i g e n v a l u e s  o f  a l a rge  K a r l e - H a u p t m a n  m a t r i x  c an  
be  u s e d  fo r  s eve ra l  p u r p o s e s .  Firs t  o f  all, t h e y  p r o v i d e  
i n f o r m a t i o n  a b o u t  t h e  qua l i ty  o f  t h e  p h a s e  set.  Large ,  
n e g a t i v e  e i g e n v a l u e s  i n d i c a t e  t h e r e  is l i t t le r e l a t i o n  

b e t w e e n  t h e  p h a s e  set  a n d  t h e  crysta l  s t ruc tu re .  
S e c o n d ,  t h e  e i g e n d e n s i t i e s  p r o v i d e  a m e a n s  to  wr i t e  

t he  K a r l e - H a u p t m a n  m a t r i x  as t h e  s u m  of  t h e  con t r i -  
b u t i o n  o f  t h e  e igenva lues .  T h e r e f o r e ,  e i g e n d e n s i t i e s  can  
be  u s e d  to  p u t  k n o w n  s t r u c t u r a l  i n f o r m a t i o n  in to  a 
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