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Abstract

The possible usefulness of eigenvectors and eigenvalues
of Karle-Hauptman matrices is examined. The eigen-
value spectra of structures with calculated and
measured |U|’s are discussed and the result of several
attempts at phase refinement are reported. The use of
the sum of the square of the negative eigenvalues
(SSNE) as a goodness-of-fit criterion is examined. The
possible use of a priori information is investigated using
the approximation of orthogonal electron densities
corresponding to eigenvectors with eigenvalues greater
than zero.

1. Introduction

The nomenclature used in this paper is given in Table 1.

In an earlier paper (van der Plas et al, 1998), the
algebraic properties of large Karle-Hauptman matrices
were examined and the information obtainable from
the eigenvalues and eigenvectors of these matrices was
investigated. It was found that for calculated reflections
the eigenvalue spectrum of a Karle-Hauptman matrix
contains a maximum of N eigenvalues with values
greater than zero and (if » > N) n — N eigenvalues
exactly equal to zero. This result leads directly to the
assumption that the properties of eigenvalues and
eigenvectors might be used in an algebraic approach to
the phase problem, as an alternative to the probabilistic
approach commonly associated with direct methods.

Since in practice Karle-Hauptman matrices filled
with random phases generally contain negative eigen-
values, algorithms were developed to minimize the
SSNE. Two possibilities are reported in this paper: one
uses the eigenvectors with positive eigenvalues to
construct a new matrix, the second consists of squaring
the Karle-Hauptman matrix. Both algorithms are based
on the properties of Karle~-Hauptman matrices with
correct phases: a Karle-Hauptman matrix with correct
phases can be reconstructed using only the eigenvectors
corresponding to positive eigenvalues (although this is
an approximation when measured reflections are used)
and a Karle-Hauptman matrix with correct phases
equals its own square (again an approximation when
finite matrices are used). These properties were derived
in the previous paper.
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Table 1. Nomenclature

Number of atoms in the unit cell

Order of a matrix

The jth eigenvalue and corresponding eigenvector

Index array for generating Karle-Hauptman matrices:
Ay = Eyypp

SSNE Squared sum of negative eigenvalues

SRz
N

Table 2. Eigenvalues as a function of the dimension

Eigenvalue  Dimension 5  Dimension 10 Dimension 500
1 0.2770 1.2992 99.5125

2 0.8320 1.6208 99.5940

3 1.1407 2.1128 99.6575

4 1.3220 2.3101 100.463

5 1.4283 2.6567 100.772

Table 3. Experimental data

Compound RN001
Composition C,;,0:Hys
Space group P2,

No. of units in cell 2

2. Eigenvalue spectra

First, the behaviour of the eigenvalues of Karle—
Hauptman matrices corresponding to a small structure
(structure I) is examined. The test structure was one-

- dimensional, consisting of five atoms at random posi-

tions along the a axis. Several Karle-Hauptman
matrices of varying orders were constructed. For each
matrix, the eigenvalues were obtained using calculated
U(H)’s. The number of non-zero eigenvalues for each
matrix was independent of the order of the matrix and
equal to the number of atoms in the cell (five). Since
U’s were used in the Karle-Hauptman matrices, the
average non-zero eigenvalue now has a value of n/N
and not 1, which is the average when the reflections as
defined by Main (1975) are used. The values of the non-
zero eigenvalues are given in Table 2. Clearly, as the
matrices become larger, the difference between the
non-zero eigenvalues becomes smaller. This is in
agreement with theory.

Finally, we examined the eigenvalue spectrum of
RNO0O1, a small steroid structure (see Table 3). The
calculations were performed with |U|’s based on
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Table 4. Eigenvalues of RNOOI (75 X 75 matrix)

Phase set SSNE
Correct phase set, not refined 1.295
Correct phase set, refined 0.907
Random phase set, not refined 30.287
Random phase set, refined 8.737

measured intensities. In Fig. 1, the lowest eigenvalues of
a Karle-Hauptman matrix of dimension 75 filled with
two different phase sets are displayed: one phase set
corresponding to the structure and a random phase set.
Both sets have been refined using an algorithm that is
given in the refinement section. Clearly, the Karle—
Hauptman matrix has negative eigenvalues regardless
of the quality of the phase set, indicating that the strict
non-negativity no longer holds for unitary structure
factors based on measured intensities. This can be
contributed to errors in the scaling of the |U|’s and the
errors in the measurement. If semipositivity can no
longer be used, a new criterion to investigate the quality
of a phase set is needed. The sum of the squares of the
negative eigenvalues (SSNE) is a natural choice for
such a criterion. Applying this criterion to the phase
sets in Fig. 1 gives the results shown in Table 4. Other
criteria are also shown: the first column gives the SSNE,
the second column gives the smallest eigenvalue, the
third one reports the number of negative eigenvalues
and the final column gives the average phase error of
the phase sets, calculated over the 276 strong refiections
present in the matrix.

These values indicate that even though the Karle-
Hauptman matrix is no longer semipositive definite for
larger orders, using U values based on measured
intensities, the number and value of the negative
"eigenvalues still give a clear indication of the relation
between the structure and the phase sets.
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Fig. 1. Lowest eigenvalues of RN0O1.

Lowest negative No. of negative Average phase

eigenvalue eigenvalues error (°)
—0.65 16 1
—0.44 21 11
—2.57 22 80
—1.08 27 73

3. Eigendensities

After the calculation of the eigenvalues and eigenvec-
tors, it is possible to calculate the contribution of each
eigenvector to the electron density obtainable from the
Fourier transform of the reflections in the Karle-
Hauptman matrix. The density corresponding to one
eigenvector is called an eigendensity, after the termi-
nology used by Main (1975).

The contribution of the ith eigenvector to the elec-
tron density can be calculated by generating the matrix

)

and using the elements in the matrix KH; as structure
factors for a Fourier transformation. Because the sum
over all KH. is equal to the original Karle-Hauptman
matrix, the sum of these eigendensities is equal to the
electron density obtained by taking all the structure
factors in the Karle-Hauptman matrix and using them
in a Fourier transformation. The exact formula used for
the calculation of electron density is formula (30) in the
preceding paper:

KH; =e\€}

[t et ]

n
2
k=1,l1=1,k#!

x exp{—2milh(l) — h(k)] - x}, @)

in which ¢; is the average value of the diagonal elements
in the matrix B; = e;Ae;, namely (eyey), For more
information and the difference between this approach
and the original approach used by Main, we refer to the
preceding paper.

Using calculated unitary structure factors, it is
expected that the sum of the eigendensities is exactly
the structure, the only possible difference being caused
by the absence of refiections not present in the Karle—
Hauptman matrix used in the calculations. To investi-
gate the properties of these eigendensities, the one-
dimensional structure used in the previous paragraph is
examined. A sample of the results of the calculation of
the eigendensities corresponding to two eigenvectors of
a 20 x 20 Karle-Hauptman matrix is shown in Figs. 2
and 3. The eigendensities were calculated from two
different Karle-Hauptman matrices, one with a simple
indexing array, namely h =1,2,3,4,5, .., resulting in

P(x)j = )"j(ejkéjl + 3,')

‘a large redundancy of reflections in the Karle—
‘Hauptman matrices (Fig. 2) and the second one with an

array h=1,2,4,7,11,.., resulting in ‘ minimum
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redundancy (Fig. 3). Matrices with a large redundancy
contain a large number of identical reflections. For
example, with the simple indexing array, the reflection
U, occurs n — 1 times. The Karle-Hauptman matrices
are generated by the indexing array as follows: an
element at position (7, j) is given by Uy, _y) The sum of
the eigendensities of the five eigenvectors with non-
zero eigenvalues equals the original structure in both
cases, although there is a difference in the sharpness of
the peaks. This is also in accordance with theory.

In Fig. 2, the simple indexing array results in-

contributions from many low-order reflections (the

highest order is 20—1 = 19). Thus, the peaks are not as

sharp as in Fig. 3. In both figures, clearly the electron
density of the eigendensities is not distributed evenly
among the peaks. This does not follow directly from the
definition but it was shown in the preceding paper that
for large matrices the eigendensities are approximately

orthogonal. This implies that, if the electron density at
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Fig. 2. Eigendensity corresponding to e;, large redundancy.
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Fig. 3. Eigendensity corresponding to e,, small redundancy.
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nonpeak positions is zero, the electron-density distri-
bution over the peaks cannot be even. It seems likely
that for smaller matrices the electron-density distribu-
tion is also uneven.

The uneven distribution of density over the eigen-
densities is of possible use in phase refinement. In the
next section, methods will be discussed for phase
refinement in which eigendensities play an important
part. When a small part of the structure is known, one
can regard this part as if it was a contribution from an
eigendensity and thus use it to generate a new phase
set, partly based on the known part of the structure.
This will be discussed further in the next section.

4. Phase refinement

Several techniques to optimize the eigenvalue spectrum
as a function of the phases were tried. By optimization
is meant trying to minimize the SSNE. As was
explained in the preceding paper and the earlier
sections of this paper, this is a suitable criterion for
phase sets in Karle-Hauptman matrices, provided there
is redundant symmetry in the matrix (de Gelder, Elout,
de Graaff & Schenk, 1993). Main (1975) also proposed
several refining routines based on eigenvalues and
eigenvectors.

Owing to the complexity of the problem, simple
linear optimization routines such as Simplex are insuf-
ficient. Routines were designed based on several
specific properties of large Karle-Hauptman matrices.
The first routine is based on the fact that any semi-
positive Karle-Hauptman matrix can be written as the
sum of its positive eigenvalues and -vectors by

N
KH =3 eAef, 3)
i=1
where e; is the eigenvector corresponding to the
eigenvalue A;, which is greater than zero (van der Plas et
al, 1998). Note that this only holds exactly when
calculated [U|’s are used, but the approximation is
acceptable when the orders are about 2N or larger. That
the deviation from the theoretical eigenvalue spectrum,
resulting from the use of measured |U|’s, is not too
large may be seen in the eigenvalue spectrum of
RNOO1, as discussed in the previous paragraph.

The refinement method consists of generating a
Karle-Hauptman matrix containing the measured |U]|
values and random phases. Next, the eigenvalues and
-vectors are calculated and a new Karle-Hauptman
matrix is generated by taking the postive eigenvalues
and the corresponding eigenvectors and substituting
them in (3). From this new matrix, only the phases are
substituted in the original matrix and the process is
repeated until convergence or a maximum number of
cycles is reached.
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Table 5. Results of method one: generating a new Karle-Hauptman matrix from the eigenvectors corresponding to
positive eigenvalues

The number of cycles indicates how many times this method was applied. The results for each number of cycles are given in three columns. The
first column gives the average error in the phase set, the second the SSNE and the third column indicates whether AUTOFOUR was able to

solve the structure with the phase set produced.

Phase set 0 cycles 50 cycles
1 (51 by 51) 80 13.58  No 76 523
(101 by 101) 79 5404  Yes 75 24.93
(151 by 151) 81 13227 No 79 75.44
2 (51 by s51) 79 1295 No 75 3.60
(101 by 101) 81 59.58  No 76 23.64
(151 by 151) 80 12933 No 76 70.33
3 (51byS1) 78 1447 No 74 3.68
(101 by 101) 79 6120  Yes 76 27.50
(151 by 151) 81 11913  Yes 80  72.06
4 (51 by 51) 79 13.53 Yes 70 3.93
(101 by 101) 79 58.64 No 79 24.97
(151 by 151) 83 12570  Yes 79 73.19
5 (51 by 51) 77 1742  No 80 433
(101 by 101) 81 58.77 No 81 27.54
(151 by 151) 80 12696 No 77 74.27
6 (51 by 51) 78 1082 No 74 342
(101 by 101) 80 5783 No 79 26.97
(151 by 151) 84 12361 No 81 70.18
7 (51by>s1) 79 1383  No 76 5.06
(101 by 101) 80 59.24  Yes 77 2741
(151 by 151) 82 12499  Yes 81 69.74
8 (51 bysl) 76 1439  No 75 4.05
(101 by 101) 83 5146  No 83 2331
(151 by 151) 82 12396  Yes 81 67.88
9  (51bySs1) 77 13.13 Yes 70 311
(101 by 101) 81 49.00  Yes 79 23.42
(151 by 151) 80 136.77 Yes 80 78.36
210 (51 by 51) 80 1285 No 79 4.80
(101 by 101) 81 53.42 No 81 25.12
(151 by 151) 81 11841 No 80 67.51

The second routine is based on the fact that in the
infinite case, for equal atoms and when the phases are
correct, a Karle-Hauptman matrix equals its own
square. Again, random phases are assigned to the |U|’s
in the matrix but now the matrix is squared and the
phases in the new matrix are substituted in the orginal
matrix and the process is repeated until convergence or
the maximum number of cycles is reached. Note that
this procedure is equivalent to applying the Sayre
equation to the reflection KH;; using the elements in the
ith row and the jth column.

The matrices were generated according to the
procedures described by de Gelder, de Graaff &
Schenk (1993). In order to regulate the refinement,
fudge factors were applied to mediate the new and the
old phase sets. These fudge factors represent the weight
of the new phase set, ranging from 1 to 0. In the first
refinement routine, the fudge factors were based on the
squared sum of the negative eigenvalues (SSNE): if the
SSNE decreases, the fudge factor is increased and vice
versa. In the second routine, the fudge factors are
inversely proportional to the difference in |U| between
the orginal entry in the matrix and the corresponding
entry in the squared matrix. It was found that ‘fudging’

500 cycles 2000 cycles
Yes 74 1.40 No 56 0.61 Yes
No 72 12.80 No 69 7.63 Yes
No 66 29.67 Yes 55 17.69 Yes
No 71 1.32 Yes 54 0.69 Yes
No 66 10.50 Yes 50 6.21 Yes
Yes 74 29.96 No 64 16.73 No
No 73 1.42 No 67 111 Yes
No 78 9.31 No 79 7.23 No
Yes 77 35.36 No 60 21.00 Yes
No 77 1.03 Yes 75 0.59 No
Yes 77 10.02 No 78 7.04 No
Yes 76 35.33 Yes 77 23.87 No
No 76 1.02 No 66 0.54 Yes
No 73 11.96 Yes 73 8.59 Yes
Yes 75 3307  Yes 68 19.59 No
No 73 1.38 Yes 68 1.06 No
No 76 13.29 Yes 52 797 No
Yes 76 26.50 No 77 15.96 No
No 71 1.20 No 76 0.83 No
Yes 63 9.14 Yes 37 4.08 Yes
No 74 29.90 No 71 26.46 No
No 74 1.38 No 76 1.32 Yes
No 82 10.47 No 75 723 No
Yes 80 31.78 No 67 13.42 No
Yes 64 0.87 Yes 64 0.71 Yes
No 71 8.78 Yes 52 5.81 No
No 79 37.70 No 78 25.76 No
No 75 1.54 No 76 1.01 No
No 78 11.71 No 80 8.24 No
Yes 71 27.32 Yes 70 21.28 No

was especially important using matrix squaring, since
this represents a Sayre approximation over only a
limited number of terms.

The refinement methods described above were used
both seperately and in combination, the results are
shown in Tables 5, 6 and 7. In all experiments, ten
random phase sets were generated and refined. The
resulting phase sets were compared with the correct
phase set to find a phase error and a Fourier transform
was performed to find peak positions corresponding to
the phase sets. The atomic positions were used as input
for the program AUTOFOUR (Kinneging & de Graaff,
1984), a Fourier recycling program that tries to extend
the starting positions into the complete crystal struc-
ture.

The tables contain the following information: In the |
first column, the phase set and the dimension of the
matrix are given. In the next column, the average error
in the phase set is given, followed by the SSNE. (In
Table 6, where this figure is unavailable, the entry is an
indication of how close the magnitude of the calculated
reflections is to the measured reflections.) The next
entry indicates whether or not the structure was solved
by the AUTOFOUR program. This is repeated in the



Table 6. Results of method two: generating a new Karle—-Hauptman matrix by squaring the original matrix

J. L. VAN DER PLAS, R. A. G. DE GRAAFF AND H. SCHENK

271

The number of cycles indicates how many times this method was applied. The results for each number of cycles are given in three columns. The
first column gives the average error in the phase set, the second gives an indication of the difference between the old and new matrices, and the

third column indicates whether AUTOFOUR was able to solve the structure with the phase set produced.

Phase set 0 cycles 50 cycles
1 (51byS51) 79 - No 49 1817  Yes
(101 by 101) 79 - Yes 61 7756 No
(151 by 151) 8 - No 47 25145 Yes
2 (51byS1) 79 - No 46 1607 Yes
(101 by 101) 8 - Yes 50 8396 Yes
(151 by 151) 80 - No 44 24513 Yes
3 (51 bys1) 78 - Yes 48 1767 Yes
(101 by 101) 79 - Yes 63 7992 No
(151 by 151) 8 - Yes 46 21974 Yes
4  (51byS51) 79 - No 67 2099 No
(101 by 101) 79 - No 79 8046 No
(151 by 151) 8 -  Yes 58 20571 Yes
5 (51 by 51) 77 - Yes 67 2090 No
(101 by 101) 81 - No 66 9444 No
(151 by 151) 80 - No 67 17797 No
6 (51 by 51) 78 - No 69 2070 No
(101 by 101) 80 - No 47 8412 No
(151 by 151) 84 - No 49 23201 Yes
7 (51 by 51) 78 - No 65 2092 No
(101 by 101) 80 - Yes 41 8830 Yes
(151 by 151) 82 - Yes 47 22219 Yes
8 (51 by 51) 77 - No 42 2001 Yes
(101 by 101) 8 - No 79 7850 No
(151 by 151) 82 - No 47 24419 No
9 (51 by 51) 77 - Yes 40 2094 No
(101 by 101) 81 - No 64 8660 No
(151 by 151) 80 - No 77 17443 No
10 (51 by 51) 80 - Yes 64 2125 No
(101 by 101) 8 - No 52 8277 Yes
(151 by 151) 81 - No 85 17839 No

following columns for different numbers of cycles. In
Table 5, the first refinement method was used exclu-
sively, in Table 6, the results are shown for the second
routine and Table 7 shows the results if the two routines
are alternated every cycle (this is referred to as method
three).

These results show the importance of the dimension
of the matrix and the number of cycles. A large number
of cycles is needed, especially when large matrices are
considered and using method one. Another important
conclusion that can be drawn is that the SSNE is a good
indication of the quality of a phase set. This is most
evident for large matrices using method three. Table 8
shows the average magnitude of the entries in the
matrices and the distribution of the reflections. In’
column 3, the number of strong independent reflections
that are used to calculate the phase error is given.
Column 4 contains the total number of independent
reflections. In column 5, the number of symmetry-
equivalent reflections is given. The numbers are for the
upper triangle of the matrix only.

Finally, the use of a priori information was examined.
In the previous section, the properties of eigendensities
suggested they might be used to introduce known
information into the process of generating phase sets

500 cycles 2000 cycles
43 2162 Yes 43 2169 Yes
38 9311 Yes 38 9331 Yes
42 25868 Yes 45 25790 Yes
43 2168 Yes 43 2175 Yes
72 9701 No 73 9796 Yes
39 25893 Yes 41 25818 Yes
43 2175 Yes 43 2175 Yes
41 9322 Yes 40 9343 Yes
49 23076 No 4 25734 Yes
65 2175 No 65 2181 No
72 9767 No 72 9779 No
48 25473 Yes 47 25640 Yes
66 2143 No 65 2154 No
74 9776 No 74 9781 No
39 25938 Yes 40 25881 Yes
65 2188 No 65 2189 No
37 9332 Yes 37 9337 Yes
39 25764 Yes 40 25732 Yes
64 2143 No 65 2188 No
39 9324 Yes 39 9341 Yes
46 24672 No 45 24776 No
42 2172 No 42 2172 No
81 9814 No 82 9829 No
39 25882 No 40 25826 Yes
41 2179 Yes 41 2182 No
67 9084 No 70 9395 No
47 25334 Yes 45 25762 Yes
65 2191 No 65 2196 No
39 9317 Yes 39 9325 No
79 21588 No 81 21784 No

using eigenvalues and eigenvectors. In practice, a
modified version of method one was used. After
generating the eigenvalues and eigenvectors, several
contributing eigenvectors were replaced by a contri-
bution from a known atomic position. This was
accomplished by replacing the contribution from the
Fourier transform from the eigenvector by a contribu-
tion from an atom whose position is known. Thus,
instead of adding a term from (2) towards the new
Karle-Hauptman matrix, the contribution is taken from

KH,,‘,C’, =gz exp[27ziH(h, — h,,) - rl, 4

where 7; is the position of the known atom and z;
corresponds to its electron density. The contribution is
scaled by requiring that the elements KH, , are equal
to the corresponding element in the origina’l contribu-
tion from (2).

It was found that this procedure results in much
faster convergence and that the resultant phase set was
nearly independent of the value of the random phases
in the starting set. All resulting phase sets had an
average phase error lower than 40° when four known
atoms were used in the procedure. The conclusion that
can be drawn from these results is that use of a priori
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Table 7. Results of methods one and two combined

The number of cycles indicates how many times either method was applied. The results for each number of cycles are given in three columns.
.The first column gives the average error in the phase set, the second the SSNE and the third column indicates whether AUTOFOUR was able to

solve the structure with the phase set produced.

Phase set 0 cycles 50 cycles
1 (51by51) 80 13.58 No 62 1.85
(101 by 101) 79 5404  Yes 67 847
(151 by 151) 8 13227 No 55 21.53
2 (S1bys1 79 1295 No 57 0.93
(101 by 101) 81 59.58 No 53 8.55
(151 by 151) 80 12933 No 56 23.70
3 (51bys1) 78 1447 No 64 211
(101 by 101) 79 6120 Yes 69 8.84
(151by 151) 81 11913 Yes 52 3872
4 (51bySs1) 79 1353  Yes 69 0.89
(101 by 101) 79 5864 No 75 9.37
(151 by 151) 83 12570 Yes 66 39.34
5  (51bysl) 77 1742 No 68 0.82
(101 by 101) 81 5877 No 63 8.76
(151by 151) 80 12696 No 75 3132
6 (51 bySs1) 78 1082 No 72 1.01
(101 by 101) 80 5783 No 48 10.77
(151 by 151) 84 12361 No 56 25.54
7 (51 by 51) 79 1383 No 71 1.13
(101 by 101) 80 5924  Yes 43 6.39
(151 by 151) 82 12499 Yes 56 30.88
8 (51 by 51) 76 1439 No 41 0.69
(101 by 101) 83 5146 No 81 10.22
(151 by 151) 82 12396 Yes 54 17.45
9 (51 by 51) 77 1313 Yes 44 0.60
(101 by 101) 81 49.00  Yes 66 7.40
(151 by 151) 80 13677 Yes 80 44.99
10 (51 by 51) 80 1285 No 64 1.36
(101 by 101) 81 5342 No 66 10.06
(151 by 151) 81 11841 No 83 32.70
Table 8. Properties of the matrices
No. of
Order of Average No. of strong independent Total No. of
matrix |E| reflections reflections reflections
51 135 191 345 789
101 1.18 328 782 3774
151 1.10 356 937 9230

information is possible but that the nature of the
refinement effectively results in a single solution
method.

5. Conclusions

The eigenvalues of a large Karle-Hauptman matrix can
be used for several purposes. First of all, they provide
information about the quality of the phase set. Large.
negative eigenvalues indicate there is little relation
between the phase set and the crystal structure.
Second, the eigendensities provide a means to write
the Karle-Hauptman matrix as the sum of the contri-
bution of the eigenvalues. Therefore, eigendensities can
be used to put known structural information into a

500 cycles 2000 cycles
No 44 0.52  Yes 44 052  Yes
No 38 375 Yes 37 379 Yes
Yes 44 13.05 Yes 43 1286  Yes
Yes 43 048  Yes 43 048  Yes
Yes 41 365 Yes 40 379  Yes
Yes 38 11.75  Yes 38 1211  Yes
Yes 40 048  Yes 40 048  Yes
Yes 41 3.82 Yes 40 3.79 Yes
No 45 13.58 No 43 1281 Yes
No 67 0.52 No 66 0.52 No
Yes 72 519 No 72 522 No
Yes 44 1487 Yes 43 12.84  Yes
No 65 052 No 65 0.52 No
No 72 527 No 72 522 No
Yes 40 13.11  Yes 39 12.88  Yes
Yes 65 052 No 65 052 No
No 38 376  Yes 37 379 Yes
Yes 43 11.77  Yes 42 1212 Yes
No 65 0.52 No 65 0.52  Yes
Yes 40 378 Yes 40 3.79 Yes
No 4?2 1347  Yes 38 12.09 Yes
Yes 58 0.53  Yes 65 052 No
No 81 511 No 81 514 No
Yes 41 1271  Yes 38 12.10  Yes
Yes 41 052  Yes 41 052 No
No 67 6.73 No 68 740 No
No 79 2678 No 43 12.84  Yes
No 66 052 Yes 67 052 No
No 40 387 No 40 3.79  Yes
No 80 1697 No 79 1699 No

Karle-Hauptman matrix simply by exchanging one
eigenvalue and eigenvector from the random starting
set with one calculated from a known atomic position.
Finally, the eigenvalues can be used in phase refine-
ment, for example using the methods described in the
previous section. The overall conclusion is that the
results are promising but the calculations are time
consuming and considerable research is still needed in
this area. Further investigation is being performed on’
combining these techniques with the ‘shake-and-bake’
principle, which has become popular recently.
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